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1 | INTRODUCTION  

Mechanizing the manual harvesting of 

Abstract 
Mechanizing the manual harvesting of fresh market fruits constitutes one of the biggest 

challenges to the sustainability of the fruit industry. During manual harvesting of some 

fresh‐market crops like strawberries and table grapes, pickers spend significant amounts 

of time walking to carry full trays to a collection station at the edge of the field. A step 

toward increasing harvest automation for such crops is to deploy harvest‐aid 

collaborative robots (co‐bots) that transport empty and full trays, thus increasing 

harvest efficiency by reducing pickers' non‐productive walking times. This study 

presents the development of a co‐robotic harvest‐aid system and its evaluation during 

commercial strawberry harvesting. At the heart of the system lies a predictive stochastic 

scheduling algorithm that minimizes the expected non‐picking time, thus maximizing the 

harvest efficiency. During the evaluation experiments, the co‐robots improved the mean 

harvesting efficiency by around 10% and reduced the mean non‐productive time by 

60%, when the robot‐to‐picker ratio was 1:3. The concepts developed in this study can 

be applied to robotic harvest‐aids for other manually harvested crops that involve 

walking for crop transportation. 
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fresh market fruits 
constitutes one of the biggest challenges to the sustainability of 
the fruit industry. Depending on the commodity, labor for manual 
harvesting can contribute up to 60% of the yearly operating costs 
per acre (Bolda et al., 2016). Additionally, recent studies indicate 
that the farm labor supply cannot meet demand in many parts of 
the world because of socioeconomic, structural, and political 
factors (Charlton et al., 2019; Guan et al., 2015). Robotic harvester 
prototypes are being developed and field‐tested for high‐volume, 
high‐value crops such as apples (Silwal et al., 2017), kiwifruit 
(Williams et al., 2020), sweet pepper (Arad et al., 2020), and 

strawberries (Xiong et al., 2020). However, the developed robots 
have not, to date, successfully replaced the judgment, dexterity, 
and speed of experienced pickers at a competing cost; the 
challenges of high fruit picking efficiency and throughput remain 
largely unsolved (Bac et al., 2014). 

As an intermediate step to full automation, mechanical labor aids 
have been introduced to increase worker productivity by reducing 
workers' non‐productive times. For example, orchard platforms 
eliminate the need for climbing ladders and walking to unload fruits 
in bins (Baugher et al., 2009; Fei & Vougioukas, 2021). Autonomous 
vehicle prototypes have been developed to assist in bin management 
in orchards (Bayar et al., 2015; Ye et al., 2017), to reduce the need for 
forklift operators. 
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In strawberry production, mobile conveyors have been intro-
duced to reduce the time pickers spend walking to get the produce 
from the plants to the designated loading stations and return to 
resume picking (Rosenberg, 2003). However, such conveyors are 
specific to strawberries and cannot be adapted to other crops. 
Furthermore, their adoption has been very slow, partly because of 
their questionable profitability, due to high purchase cost and limited 
efficiency gains. Two reasons for their inadequate efficiency are: (1) 
row‐turning in the field is time‐consuming because of their large size, 
and (2) because conveyors move slowly to accommodate slower 
pickers, often resulting in underutilization of faster pickers 
(Rosenberg, 2003). 

The walking time to carry harvested crops constitutes a 
significant non‐productive part of the harvesting cycle for several 
fresh‐market crops, like strawberries (Figure 1), raspberries, black-
berries, and table grapes. For strawberries, walking time has been 
measured to reach up to 22% of the total harvest time (Khosro Anjom 
et al., 2018); higher inefficiencies are often reported, anecdotally. 

In this study, a collaborative robotic system (aka, co‐robotic 
system) was investigated to assist in such harvesting operations by 
transporting trays, with strawberries as a case study. During the 
proposed robot‐aided harvesting, each picker walks inside a furrow, 
harvests ripe fruits, and puts them in a standard‐sized tray located on 
a special instrumented cart (Figure 2a), in the same way as in all‐
manual harvesting. These carts are equipped with load cell sensors to 
measure the weight of the tray, and a GNSS (Global Navigation 
Satellite System) module to record the geodetic locations of the carts 
(Khosro Anjom et al., 2018). The cart sends data wirelessly in real‐
time to a computer in the field (we refer to it as the “operation 
server”). Software running on the server predicts when and where a 
tray will become full (Khosro Anjom & Vougioukas, 2019). A full tray 
results in a tray‐transport request to the scheduling software running 
on the server, which dispatches a team of crop‐transport robots to 

serve those requests. The robots travel between the collection 
station and pickers to bring empty trays (Figure 2b). The picker walks 
a small distance to the robot, loads the full tray, gets an empty tray, 
and pushes a button to command the robot to travel back to the 
collection station (Figure 2c). 

Given the large sizes of commercial harvesting crews (e.g., 
strawberry harvesting in California involves crews of 20–40 people) 
and the expected cost and complexity of transporting and deploying 
one robot per worker, our work explored an operational scenario in 
which a crew of pickers is served by a smaller team of robots. The 
direct implication of this approach is that the robots are a shared 
resource, with each robot serving multiple pickers. 

Given that robots travel at relatively low speeds for safety 
purposes (in our case, 0.5–1.5 m/s), and that the distance to a picker 
can be up to 100 m long, robot sharing among the workers may 
introduce non‐productive waiting delays between the time when a 
tray becomes full, and a robot arrives. Peng and Vougioukas (2020) 
used simulations of strawberry harvesting to show that, if the time 
and place of each picker's next‐tray transport request are known, 
predictive dynamic robot scheduling—dispatch robots before trays 
become full—can be used to minimize the expected waiting time 
introduced by the robots and increase the efficiency of the crew. 

However, the deployment of harvest‐aid robots in real‐world 
commercial harvesting settings must address two additional impor-

tant issues. First, the time and location of a worker's next‐tray 
transport request is not known, but can only be predicted with some 
degree of uncertainty (Khosro Anjom & Vougioukas, 2019). There-
fore, a stochastic scheduling approach that incorporates uncertainty 
must be used; otherwise, large waiting times may arise and the crew's 
mean efficiency when robots are used can become worse than all‐
manual harvesting (Bertsimas & Van Ryzin, 2017). Second, minimizing 
the expected waiting time of the entire crew (equivalently, maximiz-

ing expected crew efficiency) is not enough. The robot team should 

F IGURE  1  The working cycle of manual harvesting in the open commercial field: (a) the picker is picking strawberries inside the furrow, and 
places them in clamshells inside a tray laying on a cart; (b) the picker transports the full trays to the collection station on the headland; (c) the 
picker loads the trays in the collection station; (d) the picker takes an empty tray back to resume picking. [Color figure can be viewed at 
wileyonlinelibrary.com] 
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F IGURE  2  The working cycle of co‐robotic harvesting in the open commercial field: (a) the picker is picking strawberries inside the furrow in 
the same way as in all‐manual harvesting; (b) the picker walks a small distance to the serving robot; (c) the picker loads the trays on the robot. 
[Color figure can be viewed at wileyonlinelibrary.com] 

also aim that each worker benefits—or at least is not hindered—by robot 
operation, every time they need to transport a tray; otherwise, pickers 
may not agree to work with the robots, as individuals may lose 
income, although the crew—as a whole—will collect more trays. 

The main contributions of this paper are that it develops an 
integrated approach to address both the above issues and evaluates 
the approach in extensive simulation experiments and in real‐world 
commercial strawberry harvesting. In particular: 

(1) A stochastic scheduling framework (Multiple Scenario Approach— 
MSA) was adopted, and algorithms were developed to apply 
the MSA to online stochastic scheduling of harvest‐aid robots. The 
MSA is more of a ‘framework' to solve stochastic scheduling 
problems under uncertainty, rather than a specific algorithm. 
Depending on the application, one has to develop the specific 
“scenario solutions” (optimization routines) and the “consensus 
function” that work for the specific problem at hand (our 
contributions). The MSA samples the uncertainties that are 
inherent in the prediction of transport requests and generates 
many possible scenarios for the spatiotemporal distribution of the 
requests. It then computes an optimal or near‐optimal schedule for 
each (deterministic) scenario and synthesizes a final schedule—that 
is executed by the robots—that is near‐optimal under the exiting 
uncertainties. 

(2) The capability of the robotic system to reject a tray‐transport 
request was added to a harvesting simulator and to the 
scheduling problem formulation. Request rejection results in no 
robot being sent to a picker if the picker's expected waiting time 
is longer than the predicted time it would take this picker to walk 
and deliver the tray. This way, each picker can only benefit from 
the operation of the robots. 

(3) Harvest simulation experiments—using a calibrated simulator— 
were performed to select key system parameters and evaluate 

our approach, and field experiments were done during commer-

cial strawberry harvesting to assess system performance. 

The rest of the paper is organized as follows. Section 2 surveys 
the previous work on robotic harvest‐aids and the related work on in‐
field logistics. In Section 3, the physical implementation of the co‐
robotic system is presented, with just enough detail to provide the 
reader with an understanding of the system's architecture and 
technical implementation. Section 4 presents the implementation of 
the MSA and the mathematical modeling of predictive stochastic 
scheduling in the context of co‐robotic harvesting, and how the 
resulting stochastic scheduling problem is solved in an online fashion. 
Section 5 presents the experimental design and the analysis of the 
experimental results from simulations, and from real‐world commer-

cial strawberry harvesting using the developed system. Finally, 
Section 6, presents the main conclusions of this study and suggests 
directions for future research. 

2 | RELATED  WORK  

To our knowledge, the concept of using a team of collaborative 
robots to carry trays during harvesting was initially proposed by 
Vougioukas et al. (2012). In their work, the problem of carrying trays 
from different locations in an orchard was formulated as a Vehicle‐
Routing Problem and solved using mixed‐integer programming. This 
concept was explored further in the context of the “FRAIL‐Bots” 
research project, under the National Robotics Initiative (USDA‐

REEIS, 2013), and a stochastic strawberry harvesting simulator was 
developed by Jang (2018) that used finite state machines (FSMs) to 
model picker and robot activities, and reactive scheduling for robot 
control. In this study, random variables, such as the time required to 
fill a tray, the picker walking speeds during picking and carrying trays 
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were identified from human pickers' harvesting activities and used to 
compute state transitions and when and where trays become full. 
Reactive scheduling policies (robots travel to pickers once trays are 
full), such as First‐Come‐First‐Served, Shortest and Longest‐

Processing‐Time were implemented, and their resulting harvest 
efficiencies were evaluated for various picker‐robot ratios using 
Monte Carlo simulation. The term “reactive” describes an operation in 
which a resource is allocated to a task only after the scheduler 
receives the task request (Blazewicz et al., 2019). In the context of 
tray‐transport robots, reactive scheduling refers to the situation 
where a robot starts traveling to a picker when—or after—the picker's 
tray becomes full. Similarly, Das et al. (2018) used FSMs with 
stochastic picking parameters in a discrete event simulator (DES) to 
evaluate the economic viability and scalability of strawberry tray‐
transporting robots, when greedy or load‐balancing reactive dis-
patching policies are used. 

In contrast to reactive scheduling, predictive scheduling policies 
incorporate information about the current state and the future 
demand (Ritzinger et al., 2016). In the context of harvesting, “future 
demand” refers to knowledge about when and where a worker's 
currently used tray will become full, giving rise to a tray‐transport 
request. If the time and location are known in advance, a robot can be 
dispatched—and start moving toward that location—before the tray 
becomes full; hence, waiting times due to robot travel can be reduced 
or eliminated. 

The collaborating workers and robots can be thought of as a 
dynamic system with a “state” that has discrete and continuous 
components. The DES‐based approaches mentioned above capture 
the discrete components of this state (e.g., a worker is “picking” or 
“transporting”; a robot is “idle” or “transporting”), but do not model 
the continuous components that include worker and robot positions 
in the field, and the weights of the trays. As a result, these discrete‐
event harvesting models cannot be used for online predictive 
scheduling. This realization has led to the development of a hybrid 
systems model for harvesting (Seyyedhasani et al., 2020a). Inside each 
operating state, difference equations with stochastic parameters 
were used to model the filling of the trays (mass transfer) and the 
positions of the pickers (motion); the stochastic parameters were 
identified from human pickers' harvesting activities and the simula-

tion was calibrated against real‐world harvest operations. 
Based on a hybrid‐systems simulator, Seyyedhasani et al. (2020b) 

showed that when tray‐transport robots were scheduled reactively, 
picker waiting time was reduced when the robot‐to‐pickers ratio 
increased. However, above a certain ratio, adding more robots did 
not reduce further the waiting time. The reason is explained as 
follows. In reactive scheduling, a robot that is idle at the collection 
station—after delivering its previous tray—will start traveling to a 
picker when the picker's request is received. However, the average 
distance of a picker from the collection station can be large, in the 
order of 30 m or more (Peng & Vougioukas, 2020). So, even if there 
are always several idle robots waiting to serve a picker and hence 
there is no delay due to lack of available robots, it will take a 
significant amount of time for a robot to travel to the picker and get 

the tray. This time cannot be reduced by adding robots. However, if 
request prediction is possible, the robot can start its travel earlier and 
thus it will be much closer to the picker when the tray is actually 
ready to be transported. 

Peng and Vougioukas (2020) used a hybrid systems simulator to 
explore predictive scheduling. In their work, a predictive scheduler 
was developed that was assumed to know exactly the times and 
locations of the tray‐transport requests. The scheduler used exact 
and heuristic methods to compute the optimal schedule. The results 
showed that when the ratio of robots to pickers was high enough, 
predictive scheduling—with perfect knowledge—increased the har-
vesting efficiency of all‐manual harvesting much more than reactive 
scheduling (24% vs. 15%). 

In reality, the locations and times of tray‐transport requests contain 
uncertainty because of stochastic picker work‐rate and varying— 
unknown—yield density (Khosro Anjom & Vougioukas, 2019). Uncer-
tainty can be detrimental for predictive scheduling algorithms that 
assume perfect information (Bertsimas & Van Ryzin, 2017; Blazewicz  
et al., 2019). Hence, a dynamic stochastic scheduling algorithm is 
needed to account for the prediction uncertainty and improve the 
scheduling performance. 

Harvest‐aid robots that carry trays bear similarity to the use— 
and scheduling—of autonomously guided vehicles (AGVs) in flexible 
manufacturing systems (FMS). A typical FMS consists of work 
machines that feed on materials and parts and produce product 
components; a material handling system (MHS) that moves 
materials and parts, and a central control computer, which 
orchestrates material movements and production flow (Buzacott & 
Yao, 1986). A modern MHS will utilize AGVs to perform material 
transport operations, such as carrying materials to the machines' 
input buffers, removing parts from the machine output buffers, 
transporting them to other machines (es (for further processing), 
and delivering finished parts from output buffers to a collection 
station. Typically, the AGVs are scheduled and dispatched based on 
the product dispatch times of the work machines, which are 
stochastic, due to reasons such as machine breakdowns, stochastic 
processing times, and unexpected releases of high priority jobs 
(Ghaleb et al., 2020). Existing approaches used to solve the FMS 
scheduling problem include genetic algorithms, stochastic dynamic 
programming, integer programming, heuristic algorithm and so on 
(Yadav & Jayswal, 2018). Similarly, in robot‐aided harvesting, the 
unknown and spatially variable crop distribution and the highly 
stochastic harvesting speeds of the human pickers result in 
stochastic “processing time,” that is, the time it takes a picker to 
fill a tray (which must be transported) is stochastic. However, the 
harvesting problem is different, because the workers are not 
stationary—like work machines are—so the transport requests are 
stochastic both temporally, as well as spatially. Additionally, workers 
can transport their own trays, and therefore, the transport robots 
can afford to reject transport requests, something that AGVs cannot 
do, in an FMS setting. Hence, the scheduling paradigms for AGVs 
operating in manufacturing environments cannot be applied directly 
in our application. 
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The crop‐transport robot operation also bears resemblances to 
automated warehouse logistics systems, in which humans and robots 
work together. Given an order for a certain product, a mobile robot is 
dispatched to the location of the rack that contains the product, it 
lifts the rack and moves it to a station where human workers pick 
items and place them in boxes (Weidinger et al., 2018). The robots 
relieve workers from walking unproductive long distances in the 
warehouse and increase the order processing productivity (Olsen & 
Tomlin, 2020). In such warehouses, many orders may arrive over 
short time intervals, driven by an online ordering system (Li 
et al., 2020). The robot scheduler must handle the dynamic product 
demand, while considering the stochastic and time‐varying work 
speed of human operators, which affects the time when a robot must 
return to a worker to retrieve the rack and move it to its original 
location (Pasparakis et al., 2021; Wang et al., 2021). Wang et al. 
(2021) developed an online prediction system that predicts the 
workers' picking rates using stochastic models and schedules the 
mobile robots to serve them with stochastic dynamic programming; 
the algorithm balances picker workloads and improves the overall 
productivity. In automated warehouses, just like in robot‐aided 
harvesting, the transport requests are dynamic and robot scheduling 
is coupled to human working speeds. However, in contrast to our 
problem, the dispatch destinations of the mobile robots are known/ 
deterministic and stationary; only the return times to the workers are 
stochastic. In our application, both the locations of the robot 
destinations and the required times of arrival are stochastic, because 
they are coupled spatiotemporally to the pickers' stochastic harvest-
ing activities. To handle the spatiotemporal uncertainty of transport 
requests, we adopted a fast and suboptimal scenario sampling‐based 
framework, the MSA, which was originally developed for the partially 
dynamic vehicle routing problem with time windows (Bent & Van 
Hentenryck, 2004b). In the planning stage, MSA samples the 
uncertainties and generates multiple scenarios (possible spatio-

temporal distributions) for the tray‐transport requests. Given each 

sampled scenario, deterministic scheduling was solved quickly and 
computed a near‐optimal schedule for the robots. At the decision 
instant, the actual schedule that is followed by the robots is 
computed from the sample scenarios using a consensus function 
(Bent & Van Hentenryck, 2004a) that was developed for the specific 
application. This schedule is the most consistent with the optimal 
schedules of all the sampled scenarios. This methodology can be 
adapted and applied to different online stochastic combinatorial 
optimization problems by building two case‐dependent modules: a 
scenario sampling function to generate multiple deterministic 
scheduling scenarios, and a scheduling solver for each sampled 
deterministic scenario (Pillac et al., 2013). 

3 | DESIGN  OF  THE  CO‐ROBOTIC  
HARVESTING  SYSTEM  

Strawberries are planted in rows with furrows between them to 
accommodate human and machine traffic (Figure 3a). The field 
headlands are used for collection/parking/inspection stations and 
traffic of people, forklifts, and trucks involved in the handling and 
transportation of the harvested crops. A typical harvesting block 
consists of approximately 80–120 rows, of about 100 m in length. 
Before harvesting, collection stations and empty trays are placed at 
one side of the field, at the headland. The crew (say, N people) start 
picking as a team in the first N rows on the left or right side of the 
block. Although there may be several collection stations, the one that 
is closest to the crew is the active one. To reduce the walking needed 
to transport full trays to the collection station, the standard 
harvesting practice is to have workers start picking from the middle 
of the field block and walk outward, toward one of its edges. Once 
that section of the block is harvested, the collection stations are 
moved to the other edge, and the other section (half of the block) is 
harvested. This method essentially “splits” a harvesting block into two 

F IGURE  3  (a) Layout of a typical raised‐bed strawberry field; (b) schematic figure of the strawberry harvesting field block with two sections 
(upper and lower); furrows; plant beds; field split line, and collection stations (Peng & Vougioukas, 2020). [Color figure can be viewed at 
wileyonlinelibrary.com] 
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sections (an example is given in Figure 3b, where there is an upper 
and a lower block, above and below the blue dotted line, 
respectively). The field can be modeled using points at the edges of 
each furrow; two points to represent the middle line, and points for 
each collection station. 

In the envisioned crop‐transport robotic aided harvesting, each 
picker enters an unoccupied furrow to start picking strawberries 
selectively from the plants on the raised beds on each side of that 
furrow. When a certain fill ratio (percent of tray filled—FR) is 
reached (Peng & Vougioukas, 2020), the picker will press a request 
push‐button on their instrumented cart. The button allows a picker 
to decide for themself if they want a robot to carry their tray. For 
example, if a picker prefers to walk to deliver a tray—to take a break 
from stooped work—they can do so. The button also helps to 
establish a simple communication protocol between the workers 
and the robotic system: a transport request is initiated and is either 
accepted by the system or rejected. The automated weighing 
system is used by the transport‐request prediction module, after the 
button has been pressed. The scheduling system signals the picker 
(LEDs on their instrumented carts) if their transporting request will 
be served by a dispatched robot or rejected by the system. If the 
picker will be served, the dispatched robot starts from the active 
collection station, drives with an empty tray to the assigned picker's 
full tray location, waits for the picker to switch empty and full trays, 
and takes the full tray back to the active collection station, where it 
waits for the next dispatching. If a tray‐transport request is rejected, 
the picker transports the full tray to the collection station, just like in 
manual harvesting. 

The co‐robotic harvest‐aiding system comprises three sub‐

systems: instrumented carts, robots (aka FRAIL‐Bots: Fragile cRop 
hArvest‐aIding mobiLe robots—USDA REEIS 2013), and an operation 
server. The standard carts used by the pickers weigh approximately 
2.2 kg and our instrumented carts have the same form factor and are 
not significantly heavier, to be accepted by pickers (4 kg max). Small 
amounts of data from each cart are transmitted wirelessly to the field 
computer over distances that span typical fields (>300 m) at rates of 
approximately 1 Hz, using LoRa (Zourmand et al., 2019). The 
communication is bidirectional since the scheduler must inform 
pickers (by turning on a light on their cart) if their requests are 
rejected or will be served. 

A Wi‐Fi router is located at the collection station and the robots 
communicate in real‐time over Wi‐Fi with the operation server to 
send their state and receive dispatching commands and reference 
paths. The robot operation is not expected to be affected by 
temporal signal drops and varying latency that often arise in 
environments with several Wi‐Fi networks and communication over 
long distances (this was confirmed in our field experiments). 
The reasons are the following. First, in our application, there is 
typically no other Wi‐Fi network in the area, as we operate 
outdoors, in fields that are far away from urban infrastructure. 
Second, when the robots travel inside the furrows and are farther 
away from the collection station—and the Wi‐Fi router—they do not 
need or use the Wi‐Fi network. The robots rely on low‐latency, 
high‐speed Wi‐Fi only when they travel in—and share the space of— 
the headland, because coordination and collision avoidance execute 
centrally, on the operation server. However, in the headland, 

F IGURE  4  Diagrams of harvest‐aiding system components and their communications [Color figure can be viewed at wileyonlinelibrary.com] 
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the distances between robots and the Wi‐Fi router are small (a few 
tens of meters), and in our experiments, we did not observe any 
issues. (A more robust and scalable solution could be to distribute 
the coordination and collision avoidance computations on the 
individual robots.) 

The complexity of the software running on the carts, robots and 
operation server requires a distributed software architecture that can 
provide real‐time performance. The system architecture is shown in 
Figure 4. 

The LoRa server, scheduling server, and FRAIL‐Bots communi-

cate with each other using a ROS network (Figure 4) that utilizes  
different physical layers. On the scheduling server, the tray request 
prediction module receives data from the cart and generates 
predictions of full tray requests. Given the subscribed ROS 
messages of robots' states and the predicted full tray requests, 
the predictive scheduling module calculates an optimized schedule. 
Then, the scheduling module publishes the dispatching commands, 
which are received by the available robots. After the robots arrive 
at the predicted full tray location, the picker will load their 
harvested full tray and take the empty tray from the robot. Then 
they press a button on the robot to command it back to the 
collection station. When a robot arrives back at the station, it will 
wait for a worker at the station to unload the full tray and replace it 
with an empty tray. 

3.1 | Robot‐aided harvesting simulator 

Before deploying the actual system, a simulator is an important tool 
for iterating and investigating the system design. In our previous 
work (Peng & Vougioukas, 2020), a discrete‐time hybrid systems 

model was developed to model and simulate the activities and 
motions of all agents involved in robot‐aided harvesting. In this 
study, the model was enhanced to incorporate uncertain transport 
requests and tray‐transport request rejections. The activities of a 
picker during robot‐aided harvesting were classified into 14 discrete 
operating states/modes (Table 1), and the operations of a tray‐
transport robot into nine states (Table 2). The operating states of 
pickers and robots and the possible transitions amongst them are 
shown in Figure  5. Next, the changes in the picker and robot FSMs 
are described in detail. 

In the picker FSM, pickers need to transport the trays themselves 
if they receive the request rejections. In FSM of robots, it may 
happen that the robot is dispatched to a row where the served picker 
cannot fill their tray and take the half‐filled tray to the next 
unharvested row. In this case, the robot drives back to the collection 
station to wait for the next dispatching command. 

Request rejections are integrated into the operation of pickers. 
When the rejection flags are received, the pickers will transport the 
full tray by themselves as in manual harvesting. The relevant 
pickers' states are “Transport‐Full‐Tray‐Furrow,” “Transport ‐Full‐
Tray‐Headland,” “Idle‐In‐Queue,” “Empty‐Tray‐Back‐Headland,” and 
“Empty‐Tray‐Back‐Furrow.” If the picker is served by a scheduled 
robot, they will wait at their full tray locations to exchange trays from 
the coming robot. In this case, the states after picking are “Waiting‐

For‐Robot” and “Exchange‐Tray.” The time spent between the full 
tray instant, and the starting instant of next tray picking is denoted as 
“non‐productive” time. 

The rest of the picker states and the dynamics inside each state 
are the same as in our previous work (Seyyedhasani et al., 2020a). 
The stochastic parameters were estimated experimentally, as in (Peng 
& Vougioukas, 2020). 

TABLE  1  States defined to represent a picker's operating states during robot‐aided harvesting 

Operating state Action 

Start A picker leaves the collection station with an empty tray in hand, to start picking. 

Walk‐Empty‐Tray‐Headland A picker walks with an empty tray on the headland, toward an empty (unoccupied) furrow. 

WALK‐Empty‐Tray‐Furrow A picker walks inside an empty (unoccupied) furrow with an empty tray until the field's split line is reached. 

Picking A picker is picking inside a furrow, with direction from the field split line toward the collection station. 

Waiting‐For‐Robot A picker waits (idle), with a full tray, for a robot to come. 

Exchange‐Trays A picker takes the empty tray brought by the robot and places a full tray on the robot. 

Walk‐Partly‐Full‐Tray‐Headland A picker takes partly full tray on the headland, toward an empty (unoccupied) furrow. 

Walk‐Partly‐Full‐Tray‐Furrow A picker takes a partly full tray inside an empty (unoccupied) furrow until the field's split line is reached. 

Transport‐Full‐Tray‐Furrow A picker takes a full tray inside a furrow toward the headland 

Transport ‐Full‐Tray‐Headland A picker takes a full tray on the headland toward the collection station 

Idle‐In‐Queue A picker waits in a line at the collection station to deliver her/his full tray and receive an empty tray. 

Empty‐Tray‐Back‐Headland A picker walks in the headland—toward the last full tray furrow ‐ carrying an empty tray, to continue harvesting. 

Empty‐Tray‐Back‐Furrow A picker walks back to the last full tray location with an empty tray, to continue harvesting. 

STOP A picker stops picking after the last tray is picked up by a robot. 
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TABLE  2  States defined to represent a robot's operating states during robot‐aided harvesting 

Operating state Action 

Start A robot at the collection station starts operation with no tray on it. 

Available A robot with one empty tray on it is waiting at the collection station to be dispatched to a tray‐transport 
request. 

Transp‐Empty‐Tray‐to‐Dispatch‐Location A Robot travels from a collection station—carrying an empty tray—toward the dispatched location. 

Wait‐At‐Dispatch‐Location A robot arrives at the location of the tray‐transport request and waits for the picker to finish harvesting. 

Drive‐To‐Full‐Tray‐Location A robot drives to picker's full tray location after served picker fills the full tray in its dispatched row. 

Empty‐Tray‐Back A robot runs back to collection stations as the served picker cannot fill the tray in its dispatched row 

Exchange‐Trays A robot is idle while the picker exchanges the empty tray with a full tray. 

Transp‐Full‐Tray‐Back A robot travels toward the collection station to deliver a full tray. 

Idle‐In‐Queue A robot with a full tray waits in a queue at the collection station to have its tray unloaded, and an empty 
tray loaded. 

Stop A robot stops its operation at the collection station after the last tray has been unloaded. 

F IGURE  5  State diagram of picker states and transport robot states during human‐robot collaborative harvesting [Color figure can be 
viewed at wileyonlinelibrary.com] 

Since the predictions of tray‐transport requests contain uncer-
tainty, the exact location when the tray will become full is not known 
exactly. Therefore, instead of sending the robot to the predicted 
location, a safety distance of 5 meters from the predicted full‐tray 
location was introduced for the robots' goal points. The pickers need 
to walk this small distance to load the tray onto the robot and take an 
empty tray back. The other states of the crop‐transport robots are 
updated as in (Peng & Vougioukas, 2020). 

3.2 | Subsystem I: Instrumented picking carts 

The instrumented picking cart was modified and fabricated from a 
standard strawberry harvest cart (Figure 6). During harvesting, the 
weight of the strawberries inside the tray located on the cart is 
measured using two load cells underneath the supporting frame. The 
cart's geographical coordinates are received from a GNSS receiver 
module (Piksi‐Multi, Swift navigation, US) that incorporates WAAS 
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F IGURE  6  The instrumented picking cart: A. Control box with 
Arduino Due, LoRa module, battery, and SD card logger inside, Piksi 
Multi GPS unit; B. GPS antenna; C. Supporting frame on the top of 
load cells; D. Load cells; E. Momentary push button, yellow and red 
LEDs. [Color figure can be viewed at wileyonlinelibrary.com] 

(Wide Area Augmentation System) corrections in real‐time. An IMU 
(BM160, Bosch, German) is integrated on the Piksi‐Multi to measure 
the instantaneous motion of the cart which is used to filter the 
weight measurements. A momentary contact button is available for 
the picker to notify the system that she/he wants to be served by the 
robot. Two LEDs (red and yellow) are used as indicators to 
communicate informative signals to the picker: a yellow LED turns 
on when the tray transport request has been assigned to a robot; the 
red LED turns on if the request is rejected, and the picker needs to 
transport the tray by themself. An SD card module installed on the 
control board is used to store all the sensor data during harvesting. 

The GPS epoch, geodetic coordinates, tray weight, and button 
state are recorded in the SD card at the GPS epoch update frequency, 
that is, at 10 Hz. The same data are assembled into messages and are 
transmitted wirelessly at a rate of 1.6 Hz to the operation server, 
using a wireless LoRa module (RFM96W LoRa Radio; Adafruit). LoRa 
is a low‐power wide‐area network protocol, which uses license‐free 
sub‐gigahertz radio frequency bands (“LoRa”, Zourmand et al., 2019). 

3.3 | Subsystem II: FRAIL‐Bot 

Two identical crop‐transport robots (aka FRAIL‐Bots) were designed and 
built for this study (Figure 7). The bill of materials for each robot is 
approximately 10,000 USD; fabrication cost is not included. Constraints 
related to budget, available time and field deployment restricted the 
number of robots to two. Still, the stochastic scheduling approach and 
the entire system is applicable—and can be tested—with two robots, and 
reasonable robot‐picker ratios can be achieved by using a crew size of 
six to eight people. The robots are designed to straddle the bed and 
occupy two furrows when driving inside the field. To avoid any 
interference of the robot with pickers in adjacent rows, pickers need to 
be spaced two furrows apart (with one empty furrow between them). 
This arrangement was acceptable by the growers and the pickers (and 

F IGURE  7  Components of FRAIL‐Bot: A. control box‐I with 
a mini‐computer, battery‐I, motor controllers for the two rear driving 
motors and two steering motors B; Control box‐II with two GPS 
modules; C. GPS antennas; D, G. DC motors with gearbox and 
incremental encoders; E. Return button; F, H. Steer‐driving system; I. 
Emergency button. [Color figure can be viewed at 
wileyonlinelibrary.com] 

was used anyway during the 2020 crop year because of the COVID‐19 
pandemic, for physical distancing purposes). 

Each robot works under supervised autonomy and its collaborative 
operation is governed by a FSM (Peng & Vougioukas, 2020). The 
hardware components for the FRAIL‐Bot are labeled in Figure 7. The  
robot weighs approximately 50 kg, and it is driven by two DC motors 
with gearboxes and incremental encoders attached to the rear wheels 
(D and E). The steering system is integrated with two screw drives and 
angle sensors attached on their rotation axis (F and H). Two GPS module 
antennas (Swift navigation, USA) are installed for getting the position 
and heading of the robot in open fields (C). An emergency stop button (I) 
is installed on the side of the robot to stop the driving system. A return 
button (E) on the front of the robot is used by the pickers to signal the 
robot that the full tray has been loaded  and the  robot must drive  back  to  
the collection station. The electronic devices including batteries, mini‐

computer (Intel NUC; Intel Inc.), driving motor controllers for rear‐wheel 
motors, steering motor controllers, and two GPS modules are installed 
inside two wooden boxes (A and B). 

The software architecture on each assigned FRAIL‐Bot is shown 
in Figure 8. The FSM node first subscribes to the schedule message 
from the operation server including the dispatching time and 
dispatching location, from the operation server (explained in 
Section 3.4). When the dispatching time is reached, the navigation 
node generates the planning path from the current location of the 
robot to the assigned location inside the row. Given the planned path 
and the current robot location and heading, the path tracking module 
continuously outputs the control command to the motion control 
node, which converts the motion command of the robots to the 
commands of driving motors. A robot localization node fuses the 
subscribed sensor information, including GPS measurements, IMU 
data, and wheel odometry to estimate the pose and publishes the 
current pose of the robot into the ROS network. 
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F IGURE  8  The architecture of the FRAIL‐Bot software under ROS [Color figure can be viewed at wileyonlinelibrary.com] 

The operation of each FRAIL‐Bot is guided by a FSM introduced 
in our previous work (Peng & Vougioukas, 2020). The detailed 
implementation of each ROS node on the FRAIL‐Bot in Figure 8 was 
elaborated in the PhD dissertation (Peng, 2021). 

3.4 | Subsystem III: Operation server 

The hardware of the operation server subsystem is composed of two 
parts: a LoRa server board and a scheduling server computer 
(Figure 9). The LoRa server board is connected to the server 
computer by a USB cable. It collects the cart states from the 
distributed instrumented carts in the field and publishes the received 
states as ROS messages. The FRAIL‐Bots publish their states in the 
ROS network through a local Wi‐Fi. The scheduling server module, 
running on the server computer, integrates the cart states and robot 
states to formulate and publish an online schedule message in the 
ROS network. FRAIL‐Bots directly subscribe to the ROS schedule 
messages and execute the dispatching decisions. The LoRa server 
module also subscribes to the ROS schedule messages and transmits 
them to each instrumented cart through LoRa. 

Each functional module was packaged into one ROS node shown 
as Figure 9. The function of each ROS node was introduced as 
follows. The detailed implementation of these nodes was elaborated 
in the PhD dissertation (Peng et al., 2020). 

a. Cart‐states‐pub node: It receives the data of cart states from the 
LoRa module on the server board, converts the geodetic 
coordinates of each cart to field map coordinates, packages the 
data into ROS messages, and advertises them to the server 
computer through a USB cable. 

b. Server‐reject‐sub node: It subscribes to the “serve” or “reject” 
flags advertised by the predictive scheduling node and is 
transmitted to each cart via LoRa. 

c. Tray‐request‐prediction node: It subscribes to the cart messages 
from the LoRa server board and updates the prediction of picking 
parameters, harvesting rate, and moving speed while picking. The 
predictive requests are generated and published on the ROS 
network when a certain fill ratio of the tray is reached, and the 
request button is pressed by the pickers. 

d. FRAIL‐Bot‐scheduling node: It subscribes to the robot states from 
the FSM node running on each FRAIL‐Bot, and to the predictive 
tray transport requests from the tray‐request‐prediction node. 
Given these data, this node runs a stochastic predictive scheduling 
algorithm and advertises dispatching commands to the FRAIL‐Bots, 
as well as the rejection and serve flags to the LoRa server boards. 
The online solver of this node is explained in Section 4. 

e. FRAIL‐Bots' coordination node: It functions as the traffic 
management for the robots in the shared area of the headland. 

f. Operation visualization node: This node subscribes to the 
messages from multiple nodes of different modules for visualiza-
tion of the cart/robot states. It also provides some user interface 
to tune the parameters during field operation. 

4 | SCHEDULING  OF  FRAIL‐BOTS  UNDER  
STOCHASTIC  REQUESTS  

In our previous work (Peng & Vougioukas, 2020), the predictive 
scheduling of crop‐transport robots assumed perfect knowledge of 
future requests and was modeled as a parallel machine scheduling 
problem (PMSP) with a release time constraint. Also, the scheduler 
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F IGURE  9  The system architecture of the operation server modularized as ROS nodes [Color figure can be viewed at wileyonlinelibrary.com] 

served all the requests (no rejections), and its objective was to 
minimize the total waiting time of all requests. 

In this study, two major changes were made to the scheduling 
problem: (1) the scheduler takes into consideration the inherent 
uncertainty in the predictions of the tray‐transport requests, and (2) 
the scheduler is allowed to reject transport requests. The first change 
was necessary because the time needed to fill a tray and the 
corresponding distance traveled by the picker cannot be known in 
advance, because they are random variables that follow stochastic 
distributions. The second change was also necessary, because, if all 
requests are served, a picker may wait for a robot to arrive, even if 
the waiting time is longer than the time it would have taken the 
picker to walk and deliver the tray themselves. Such a policy would 
be inefficient, and not acceptable by the pickers, who are paid based 
on the number of trays collected; long waiting times lead to fewer 
trays and lower pay. 

The objective of the scheduler is to minimize the expected total 
non‐productive time of all the transport requests. The formulation of 
the scheduling problem is given next. 

In robot‐aided harvesting, each picker from a set 
= {P1, P2,  …,  PQ} of Q pickers harvests fruits in a tray that lies 

on a picking cart. A team of M identical transport robots 
= {F1, F2,  …,  FM} brings empty trays to the picker and carries 

the full tray to a collection station; the station's coordinates Ls are 
known. The robot scheduling algorithm has access to a set of 

= { , …  N} 
0 ≤ N ≤ Q. 

Let us assume that at an instant t0, i is different from the 
deterministic request that contains the following (known) infor-
mation: (1) a prediction distribution of the remaining time interval 

predicted tray‐transport requests , where  
1, 2 , , 

fℵ(∆ti ) with respect to t0 until the tray becomes full of harvested 
fruit, (2) the predicted moving speed along the row ℵ(vi

y
) while 

fpicking, and (3) the current location of the picker Li. ℵ(∆ti ) is 
calculated from recent measurements from the load cells and 

yℵ(vi ) is computed from recent GPS readings. The main methodol-

ogy for building these predictions is explained in this study 
f(Khosro Anjom & Vougioukas, 2019). The distribution of ℵ(∆ti ) 

y fand ℵ(vi ) followed Gaussian distributions. ℵ(∆ti ) was achieved by 
linear regression model to predict the value of full tray time at 

ythe weight of the tray capacity. Mean of ℵ(vi ) was obtained by 
linear regression to estimate the slope parameter and standard 

ydeviation of ℵ(vi ) was obtained from the standard error of the 
regression coefficient. 

A fast and near‐optimal approach, MSA (Pillac et al., 2013), was 
adopted and adapted to incorporate the dynamic stochastic predic-
tive requests in the computation of the schedule, assuming a limited 
computational power is available in this agricultural simulation. To 
implement MSA, two application‐dependent functions must be setup: 
(1) a function GET‐SAMPLES ( ,M) which returns a set of M 

ξ ξ1 ξ ξM ξideterministic scenarios = { 2, …, }. Each scenario , 
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Ls: 

fLi 

the collection station location; 

the full tray location in the field frame. 

TABLE  3  Definitions of symbols used 
in the modeling of deterministic predictive 
scheduling 

Dsi: 

∆ti 
u: 

∆tL: 

one‐way traveling distance, the Manhattan distance from Ls to Li 
f along the path; 

the corresponding robot's one‐way travel time calculated by Dsi and robot speed; 

time needed for the picker to take the empty tray from the robot and load the full tray 
on the robot (and then resumes picking); 

UL:tΔ

p∆ti : 

the time needed at the collection station to unload the full tray from the picker/robot 
and return an empty tray to the picker/robot; 

The total processing time required by a robot to serve request Ri and be available to 
serve another request; 

Δ r :ti release delay of request Ri, the greatest value that eliminates robot idle time at 
r f uLi . tΔ = i max  tΔ −i tΔ , 0( i ) ) 

tΔ A:k 
A AThe robot is available to be dispatched again, after a time interval tΔ k . tΔ = 0k , if the 

robot is available at the collection station; 

d :tki 
rThe dispatch time instant of robot Fk to the request Ri, which is no earlier than t0+Δti . 

contains a set of N sampled requests. Each of the deterministic 
requests Ri is sampled from predictive transport request distributions 

f y
iℵ(∆t ), ℵ(vi ) of i in  ; (2) a function OPTIMAL‐SCHEDULE ( ξi ) 

which returns an optimal schedule given a deterministic sampled 
scenario ξi . The schedule includes the request rejections to some 
pickers and serving order for the remaining requests (3) a consensus 
function that combines all the individual scenario solutions into a 
single execution plan. For the function GET‐SAMPLES (  ,M), the 
Monte Carlo sampling method was used to get the M sampled 

y fscenarios from two distributions ℵ(vi ) and ℵ(∆ti ). 
In a sampled scenario ξi, each deterministic predictive request Ri 

f yis composed of two sampled components, ∆ti and vi . Given these 
components, a deterministic full tray location Li

f . Can be calculated. 
The variables needed to formulate the scheduling problem—including 
request rejections—are listed in Table 3, and are discussed in greater 
detail in our previous work that did not address request rejection 
(Peng & Vougioukas, 2020). 

The pickers' requests may be rejected by the scheduler. In this 
case, they need to transport the full tray themselves and their self‐
transporting behavior is modeled following our previous work 
(Seyyedhasani et al., 2020a). If the picker transports the tray 

Tthemselves the total time ∆ti , required to deliver the full tray and 
take an empty tray back to resume picking is shown as (Equation 1).
∆ti

uP is the one‐way travel time interval from full tray location Li to Ls 
uPby the picker in Ri. ∆ti is calculated based on Dsi and an estimated 

picker self‐transport speed vpi from the historic data of pickers. ΔtUL is 
assumed to be constant depending on the crew management in the 
harvesting field. 

T uP UL∆t = 2∆t + ∆t . (1)
i i 

The tray completion time instant, ti
CP if the full tray is transported 

by the picker himself, is shown in (Equation 2) with ∆tiT representing 
the estimated tray‐transport time by the picker. 

t
CP = tf + ∆tT . (2)
i i i 

CRIf the request is served by a robot Fk , the time instant, ti to 
resume picking is expressed as (Equation 3). The picker can start 
picking the next tray after the robot arrives at the full tray location 
and the full tray is exchanged with the empty tray from the robot. 

C 
i ik it R = td + ∆tu + ∆tL. (3) 

NThe nonproductive time, ∆ti of Ri can be calculated as 
(Equation 4). The objective of the modeled problem is to minimize 
the mean of the nonproductive time of all the pickers. In the objective 
function, both ti

CP and ti
CR are represented by tiC which is decided by 

the decision variables. All the above‐mentioned time intervals and 
instances are labeled on the timelines in Figure 10. 

N C f∆t = t − ∆t . (4)
i i i 

The function OPTIMAL‐SCHEDULE ( ξi ) was developed to 
compute the solution for each scenario. First, the exact solution is 
computed using integer programming to get the best possible 
solution. Second, a fast and suboptimal heuristic policy is implemen-

ted to get a near‐optimal solution in less time, so that the pickers do 
not need to wait for long time caused by the scheduling computation. 
The results of the exact and heuristic solutions are compared using 
the proposed performance metrics in Section 5. 

4.1 | Scenario solution using integer programming 

The deterministic predictive scheduling problem of each sampled 
scenario was modeled using an integer linear program. The scenario 
scheduling problem is different from our previous work (Peng & 
Vougioukas, 2020) in that the scheduler can now reject transport 
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F IGURE  10  Timelines of request Ri 

served by robot Fk or rejected by the 
scheduler [Color figure can be viewed at 
wileyonlinelibrary.com] 

requests.  is used to represent the discretized time set, {1, 2, 3…, 
TB}. TB is the upper bound makespan of all requests (from t0 to 
t0 + maxi {ti

C
}). For this problem, the upper bound TB can be 

expressed as (Equation 5). It is easy to prove that the completion 
time of any request cannot be larger than the maximum completion 
time of self‐transporting; otherwise, that request should be trans-
ported by the picker themselves. 

f T 
i iTB ≤ t0 + maxi{Δt } + maxi {Δt }. (5) 

The decision variable is defined as χikt, where i is the index of 
request Ri. k is the index of the serving robot if 1 ≤ ≤k M; k = M + 1 
means that the picker transports the tray himself. t is the index of 
discrete‐time instant. χikt is equal to 1 if Ri is served by a robot Fk 

(1 ≤ ≤k M) or transported by the picker himself (k = M + 1) at the 
time instant t. The problem can be modeled using integer linear 
programming (ILP) as follows: 

N 
Nmin ∑∆t s. t.i 

i=1 

rM Δti
∑ ∑ χikt = 0,  Ri ∈  , (6) 
k=1 t=1 

N Δtk
A 

∑ ∑ χikt = 0,  1  ≤ ≤k M, (7) 
i=1 t=1 

f
M t 

∑ ∑
i 
χi M( +1)t = 0,  Ri ∈  , (8) 

k=1 t=1 

M+1 TB 

∑ ∑ χikt = 1,  Ri ∈  , (9) 
k=1 t=1 

M t 

∑ ∑ χikt ≤ 0, Ri ∈  , (10) 
t max  (1,t−Δ i )k=1 p
= t 

M TB 

ti
C = ∑ ∑ (t + tiU + ΔtL)χikt, Ri ∈  , (11) 

k=1 t=1 

TB 
C Tti = ∑ (t + t )χi M  t, Ri ∈  , (12)i ( +1)  

t=1 

∆ti
N = tC − ∆ti

f , R ∈  . (13)
i i 

The objective function is the sum of the non‐productive time of 
all requests and the required constraints are explained as follows. In 
(Equation 6), it represents that any request cannot be served by a 
robot before their release constraints. (Equation 7) means that the 
robot's start serving time cannot be earlier than their initial available 
time. If the tray is transported by the picker her/himself, the start 
time cannot be earlier than the full tray instant ti

f as (Equation 8). 
(Equation 9) represents that all requests must be served either by a 
robot or by the picker. (Equation 10) shows that any request can be 
served by only one robot (preemption is not allowed). (Equation 11) 
expresses the tray completion time of the request served by the 
robots, while (Equation 12) is the tray completion time served by the 
pickers themselves. (Equation 13) shows the non‐productive time of 
request Ri. 

As mentioned above, predictive scheduling of crop‐transport 
robots is a variant of the Parallel Machine Scheduling Problem 
(PMSP). Following symbol notations defined by Lawler et al. (1993), 
the problem is referred to as Pm r| |i ∑Ci, where Pm represents identical 
parallel machines, ri means that the ith job cannot be processed until 
its release time, and ∑Ci represents that the objective criterion is to 
minimize the sum of the completion times of all jobs. It has been 
shown that this problem is NP‐hard in a strong sense and hence the 
optimal solution cannot be obtained in polynomial time (Du 
et al., 1991). In this paper, the modeled ILP was solved by a 
commercial solver (Gurobi Optimization, LLC., 2020) at the cost of 
long computation. 

4.2 | Scenario solution with heuristic policy 

In this study, a heuristic policy, namely, the shortest release time 
with long process time first (SRLPT) (Phillips et al., 1998), 
is proposed to achieve a fast but suboptimal result in each 
sampled deterministic scenario. The requests reaching the release 

r rconstraint (Δti = 0Δti = 0) will enter a scheduling pool and 
the request with the longest process time in the pool is ordered 
to be served by the first available robot. The non‐productive time 
of those requests with large self‐transport time can be reduced 
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significantly by the  service of available robots. The requests that that request is reached. The rejection flags are sent to the pickers 
are expected to have a shorter transport time are served late, if they are not served by the robot at the instant when their trays 
because even if they are rejected, the non‐productive time are full. The scheduler will update the scheduling plan only when 
will not be that large. The requests with a full tray location less there are robots available and new transport requests entering 
than 5 m away from the end of the row are rejected, as the set. 

those pickers only need to walk a small distance back and forth 
to resume picking. The performance comparison between the 
heuristic policy and ILP is shown in Section 5.4.1. 

4.3 | Consensus function 

In the MSA framework, given the current pool of solutions (scheduling 
plans) for the multiple sampled scenarios, the role of the consensus 
function is to select/synthesize a plan most similar to the current pool of 
plans. Bent & Van Hentenryck (2004b) proposed a consensus function for 
a partially dynamic vehicle routing problem with time windows, and 
applied it successfully for online packet scheduling in computer networks 
(Bent & Van Hentenryck, 2004a). The heuristic idea behind the consensus 
function is the least‐commitment approach, a well‐known approach in the 
artificial intelligence community (Bent & Van Hentenryck, 2004a). By 
choosing jobs that occur more often, the consensus algorithm computes a 
solution that is as consistent as possible with the optimal solutions of the 
pool of scenarios. 

In this study, we developed a consensus function for our 
application; its pseudo‐code is shown in Algorithm 1. After all the 
deterministic scenarios are solved with the function of OPTIMAL‐

SCHEDULE, the scheduling plan of each scenario is converted to a 
serving order based on their scheduled serving times. A score 
function is defined for each request in one scenario. If the request is 
rejected, the score value of that request is counted as −1. If the 
request is served by a robot in the order of Oi among all the serving 
requests in that scenario, the score of that request is counted as 
(N − Oi). The score of each request is obtained by adding the scores 
of the requests among all the sampled scenarios. The consensus 
serving order is the descending order of the scores of all the requests 
in  . The available robots were dispatched to the first request in the 
consensus order at the instant when the expected release time of 

5 | EXPERIMENTS  AND  RESULTS  

5.1 | Evaluation metrics 

In both the all‐manual and robot‐aided strawberry harvesting trials, 
efthe productive time per tray—denoted as ∆ti —is defined in the same 

way: it is the time required by a picker to fill the ith tray to its 
capacity, starting from an empty tray. Productive time includes 
picking and walking to relocate to a new furrow to resume picking 
when the tray cannot be finished in the current furrow. Non‐

feproductive time per tray—denoted as ∆ti —is defined as the time 
interval that is not spent picking or relocating to pick from another 

fefurrow. In manual strawberry harvesting, ∆ti includes the picker's 
walking time to transport the full tray to the unloading station, the 
waiting time in a queue to deliver the tray and get an empty one, and 
the walking time required to return to the previous position to 
resume picking. In contrast, in robot‐aided harvesting, ∆ti

fe is the sum 
wof the time, ∆ti , the picker spends waiting for a robot to arrive, plus 

the time, ΔtL , needed to place the full tray on the robot and take an 
wempty tray from the robot. ∆ti is highly dependent on the robot 

scheduling policy, whereas ΔtL is small and is assumed to be constant. 
ΔTfe represents the average non‐productive time of all the trays 
measured in an experiment. 

The mean harvesting efficiency, Eff , when harvesting N trays with 
or without robots, is defined as the averaged sum of ratios of 
productive time over total time spent for each tray; it is calculated by 
(Equation 14): 

N ef1 ∆ti
Eff = . (14)

N i 
∑ 
=1 ∆ti

ef + Δti
fe 

ΔTfe and Eff can be used to evaluate the overall performance of 
all‐manual and robot‐aided harvesting. Inspired by ASAE field 
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efficiency standards for machinery (ASAE, 2009), this efficiency 
metric does not include any off‐field times required by workers or 
robots to support the harvesting operation, such as the time needed 
to travel to the field, prepare for work, or store equipment. 

5.2 | Simulation experiments 

Two sets of simulation experiments were performed, one before the 
field harvest experiments (pre‐harvest set) and one after (post‐
harvest set). The first set of simulation experiments had three goals. 
The first goal was to evaluate the effect of request rejections on 
scheduling performance. The second goal was to compare the 
performance difference between the heuristic (SRLPT) and exact (ILP) 
optimization algorithms introduced in Section 4.1. The third goal was 
to select the number of scenarios that the MSA would sample when 
executing in real‐time, during field experiments. It is known that 
when more scenarios are sampled, the MSA solution improves, but 
takes a longer time to compute; hence, a tradeoff must be reached. 
The second set of simulation experiments used the data collected 
during the field experiments to investigate how the harvest‐aid 
system's efficiency scales when the robot/picker ratio stays the same, 
but the crew and field sizes increase. 

All the simulation experiments were performed using a Monte‐

Carlo simulator that was adapted from our previous work (Peng & 
Vougioukas, 2020). In this study it was shown that simulating the 
harvest process by running 100 Monte‐Carlo runs was sufficient to 
provide 1% precision in the simulation results. The main underlying 
assumption in our analyses of the results is that the 100 sampled 
means of each evaluated metric were normally distributed. 

The parameters used in the simulations are described next. 
During the simulations (and the field experiments) the robot speed 
was 0.8 m/s on the headland and 1.5 m/s inside the furrows. The 
effects of different robot speeds were studied in (Peng & 
Vougioukas, 2020) and (Peng, 2021), and it was shown that higher 
robot speeds improve system performance significantly. However, 
relatively low values were selected in this study, primarily for safety 
purposes, since the robots would travel close to humans during the 
field experiments. 

Another important parameter that is used by the scheduler 
during simulation and real‐world deployment is the tray fill‐ratio (FR) 
threshold. The fill ratio was defined in (Peng & Vougioukas, 2020), as 
the current weight of a tray divided by the tray's maximum weight 
(capacity). In this study it was proved that predicting tray‐transport 
requests and adding them to the scheduler's queue too early—when 
FR is below some threshold—does not improve the scheduling 
performance (although it increases computational load). Also, the 
prediction uncertainty decreases as the tray gets closer to being full 
(Khosro Anjom & Vougioukas, 2019), and therefore, tray‐request 
predictions and scheduling should only be performed when FR is 
greater than a threshold. The effects of different robot speeds and 
FRs were studied in (Peng & Vougioukas, 2020) and (Peng, 2021), and 

the FR threshold for the range of robot speeds used in this study was 
determined to be 0.7. 

The last set of parameters that is used in the simulation and by 
the scheduler during simulation and field deployment relates to the 
pickers' work or harvesting parameters (one‐tray‐picking time, one‐
tray picking distance, and picker walking speed parameters), which 
are stochastic. The distributions of the work parameters of the crew 
were estimated from experimental data, as shown in Section 5.4.2. 
The random parameters of the requests were generated following 
the distributions measured by Khosro Anjom et al. (2019): the mean 
of bias for the full tray time prediction was less than 10% of one tray 
picking time, and the standard error of the prediction was 30 s. 

After determining all the parameters, in pursuit of the first goal, 
the effect of request rejections was investigated for robot teams of 
various sizes, using exact optimization algorithms. For scheduling 
without request rejections, we applied the exact Branch and Bound 
Search algorithm developed in our previous work (Peng & 
Vougioukas, 2020). For scheduling with request rejections, we 
applied the ILP solver introduced in Section 4.1. To pursue the 
second goal, the ILP and SRLPT single‐scenario optimal scheduling 
solvers were implemented in MSA's OPTIMAL‐SCHEDULE module 
and compared for an increasing number of robots (4–12 robots) and a 
typical crew size of 25 pickers. Toward the third goal, the harvesting 
efficiency achieved with the MSA was computed when the number 
of scenarios ranged from 1 to 80, with eight robots and 25 pickers. 
The efficiency results from solution pairs that used different numbers 
of scenarios (e.g., 30 vs. 50 scenarios) were compared using Tukey's 
honest significant difference (HSD) tests, to determine the number of 
scenarios to use in the field experiments, that is, the one beyond 
which the performance did not improve significantly. The simulation 
results and their analyses are presented in Section 5.4.1. 

5.3 | Field experiment design 

The main goal of the field experiments was to evaluate the savings of 
the harvest‐aiding system in commercial strawberry harvesting, with 
a crew of professional pickers. The parameters used during robot 
deployment (e.g., robot speeds, picker work parameters) were the 
same as the ones used in the simulation experiments. The scheduler 
generated 50 scenarios and used the SRLPT heuristic with an FR 
threshold of 0.7 to solve each one, based on the outcome of the 
simulations (see Section 5.4.1). 

On November 10 and 11, 2020, the harvest‐aiding system was 
evaluated using two robots with a crew of six professional pickers in a 
commercial field near Lompoc, CA shown as Figure 11. All  the field  
experiments were conducted under the UC Davis Institutional Review 
Board (IRB) compliance protocol “IRB 575389‐8.” Each day, the pickers' 
working schedule was divided into two (2) sessions. The first session 
was from 8:00 a.m. to 11:00 a.m. and the second session was from 
11:30 a.m. to 2:30 p.m. In the first session, on November 10, our system 
was set up and tested on the mapped field while the crew harvested the 
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F IGURE  11  (a) Satellite picture of commercial field block near Lompoc, CA from Google Maps. (b) Map of the field block built with RTK: blue 
and orange shaded areas were evaluated on November 1. [Color figure can be viewed at wileyonlinelibrary.com] 

orange‐colored field block (Figure 11b) in their usual manner, using our 
instrumented carts. The pickers collected the strawberries in 500‐g 
carton  box trays. The  gross mass of a full  tray  was around 4.5  kg  (10  lbs).  
Their harvesting data was collected and saved on the SD card modules 
of the carts. From the data in that session, their walking speeds when 
transporting full trays were estimated. This data was used to estimate 
the performance of manual harvesting. 

In the second and first sessions of November 10 the first session 
of November 11, all six pickers started harvesting from the field's 
middle line and moved toward the unloading station in their typical 
harvesting manner. The crew harvested with the assistance of the 
two robots (blue area for November 10th and red area for November 
11 on Figure 11b). When the co‐robotic harvest‐aiding system was 
used, the harvesting data was recorded into ROS files on the server 
laptop, as well as in the SD cards of the carts. The evaluation results 
of our harvest‐aiding co‐robotic system were obtained from these 
two sessions. Non‐parametric tests were used to compare the 
performance of manual and co‐robotic harvesting. 

During robot‐aided harvesting the pickers were asked to press 
the request button on the cart once they filled six out of the eight 
clamshell boxes in their tray. It was explained to them that if their 
transport requests were accepted by the robots, the yellow LED on 
their cart would turn on. In this case, they were instructed to wait for 
a robot, in case they filled their tray and a robot had not arrived. The 

scheduling system dispatched robots to serve the requests by solving 
online the stochastic predictive scheduling problem. The robots were 
scheduled and dispatched to the predicted full‐tray locations inside 
the rows. Upon arrival at the commanded location, the robots would 
stay still until the picker placed their tray on the robot and pressed a 
button that sent the robot back to the collection station. 

The system components are shown in Figure 12. The full‐empty 
tray swap location was approximately 5 m away from the depot 
center where the server laptop was located (red star in Figure 11a), 
on its right‐hand side, facing the field. 

In the first session on November 10, 33 trays of fruit were 
harvested manually in the field block. In the second session on 
November 10, 41 trays were harvested by the 6 pickers working with 
the co‐robotic harvest‐aiding system. In the first session on 
November 11, the same picking crew of 6 people harvested 24 trays 
of fruit using the harvest‐aiding system. 

5.4 | Analysis of results 

The results were combined and presented in this section. First, the 
simulation results are presented and analyzed in Section 5.4.1. Then, 
the results from field experiments are presented in Sections 5.4.2 
and 5.4.3. 
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F IGURE  12  Components of robotic harvest‐aiding system: (a) Instrumented carts; (b) collection station (aka, depot center) with scheduling 
server; (c) two FRAIL‐Bots parked at the depot center; (d) scheduling server user interface built with Python Matplotlib and ROS RVIZ for 
visualization and monitoring of the robots' motions. [Color figure can be viewed at wileyonlinelibrary.com] 

5.4.1 | Pre‐harvest simulations: Results and analysis without rejections. Figure 13 shows that the 95% confidence interval 
of the harvest efficiency of the request rejection policy was always 

First, simulation experiments were performed to compare the (robot/picker ratio greater than 4:25) much higher than that of the 
performance of the scheduling policies with request rejections and manual harvesting. In contrast, when all requests must be served, 
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F IGURE  13  Mean (points) and its 95% confidence interval (shaded area) of harvesting efficiency as a function of the number of robots for 
the scheduler with request rejections and without request rejections. [Color figure can be viewed at wileyonlinelibrary.com] 

TABLE  4  p Values of t‐test of scheduling efficiencies with/ 
without request rejections for 10, 11, and 12 robots. 

Number of robots 10 11 12 

p value 5.24e−11 0.823 0.141 

robot‐aided harvesting was better only when the robot/picker ratio 
was higher than 7:25. 

Also, the 95% confidence intervals of the two mean efficiencies 
intersected when the number of robots was greater than 10. This fact 
indicates that the predictive scheduler performs better with request 
rejections than without rejections, when the robot/picker ratio is 
smaller than 10/25. To verify this rigorously, the mean efficiencies of 
the two policies were compared using t‐tests, for 10, 11, and 12 
robots. The null hypothesis for the t‐tests was that the mean 
efficiencies of the two policies have no significant differences in the 
robot ratios of 10/25, 11/25 and 12/25. The α value for the tests was 
set to 1% (Type I error). The results in Table 4 show that when there 
were fewer than 10 robots (robot/picker ratio is less than 1:2.5) the 
harvesting efficiency with request rejections performed significantly 
better than the efficiency without request rejections. However, when 
the number of robots was 11 or more, there was no significant 
difference, as the p value was greater than 0.05. 

The main reason is that, when the robot/picker ratio is smaller, 
the tray‐transport request queue tends to be larger, and request 
rejection increases the robot availability, thus allowing faster service 
(reducing queue size). However, at high ratios, the tray‐transport 

request becomes smaller, and request rejection has a smaller effect. 
At the limit of 1:1 ratio, there would be no tray‐transport requests 
queue, since a robot would always be available immediately for each 
picker, and both policies would yield the same performance. The 
harvest efficiency curves are not expected to change if the two 
policies were to be applied to bigger and different crews or larger 
fields, because the size of the tray‐transport request queue depends 
on the robot/picker ratio; however, the exact robot/picker ratio 
where the two policies result in the “same” performance may change. 

Next, we evaluated the performance of the proposed heuristic 
policy (SRLPT) and ILP policy (Peng & Vougioukas, 2020), using 
harvesting efficiency as our evaluation metric. The comparison Eff is 
shown in Figure 14 for 25 pickers and an increasing number of robots. 

t‐Tests were applied for the mean efficiencies of the two 
policies under different robot‐picker ratios. The null‐hypothesis of 
each t‐test was that the mean efficiencies of the two policies were 
the same. The α value for the tests was set to 5% (Type I error). The 
results are presented in Table 5, where one can see that the 
performance of two policies was not significantly different when the 
robot/picker ratio was larger than 1:3 (8/25), as all p values of the t‐
test results were over 0.05. The main reason is that, when the 
robot/picker ratio is small, the robots constitute a “scarce” highly 
utilized resource, the tray‐transport request queue is larger, and 
optimal versus suboptimal scheduling makes a difference. However, 
at higher ratios, suboptimal scheduling does not affect the system 
efficiency as much; at the limit of 1:1 ratio, there would be no tray‐
transport requests queue, since a robot would always be available 
immediately for each picker, and both policies would yield the same 
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F IGURE  14  Mean values of harvesting efficiency (points) and their 95% confidence interval (shaded areas) as a function of the number of 
robots for the scheduler with ILP and heuristic SRLPT. [Color figure can be viewed at wileyonlinelibrary.com] 

TABLE  5  p Values of t‐tests for the 
Robot/picker ratio 4/25 5/25 6/25 7/25 8/25 9/25 10/25 11/25 12/25

efficiencies of two policies in different 
robot/picker ratios p values 0.030 0.015 0.013 0.024 0.055 0.118 0.140 0.379 0.488 

performance. The ILP and SRLPT efficiency curves are not expected 
to change when applied to bigger and different crews or larger 
fields, since the size of the tray‐transport request queue depends on 
the robot/picker ratio; however, the exact robot/picker ratio where 
the curves become the “same” may change. The 1:3 ratio was used 
in our field experiments. 

Finally, we investigated the performance of the MSA scheduler 
as a function of the number of sampled scenarios, given the 
experimentally measured distribution of the request prediction 
uncertainty from the work of Khosro Anjom et al. (2019). The mean 
values of harvesting efficiency and their 95% CI (shaded areas) as a 
function of the number of sampling scenarios are shown in Figure 15. 

From the results, one can see that as the number of scenarios in 
MSA increases, the mean harvesting efficiency (red curve) also 
increases, until the number reaches 50. However, when more than 50 
scenarios are considered, efficiency and non‐productive time plateau. 
Tukey's HSD tests were used for different sampling scenarios {10, 20, 
30, 40, 50} to examine their efficiency differences; the results are 
presented in Table 6. The null hypothesis was that the mean 
efficiency of MSA in different sampling scenarios was the same. 
The alpha value for the tests was set to 5% (Type I error). From the 
combinations of {30, 40}, {30, 50} and {40, 50} in Table 6, one can see 

that the scheduling performance of MSA did not show significant 
improvement when the number of sampling scenarios was over 30. 
One expects that this number will increase if the uncertainty in 
request prediction increases (e.g., due to a larger, non‐homogeneous 
crew or large variation in yield). However, the same method to 
estimate this number can be applied, once the pickers' harvesting 
parameters are known. 

Based on the above results, the number of scenarios for the field 
experiments was set to 50, a conservative value that was expected to 
perform well, even under increased uncertainty. The mean computa-

tion time for a schedule with 50 scenarios was approximately 5 s (on 
the Intel Core i7‐3770@3.40 GHZ laptop used as a server), which was 
adequate for real‐time operation. 

5.5 | Results of harvesting parameters 

The distributions of the one‐tray‐picking time, one‐tray picking 
distance, and picker walking speed parameters were generated from 
the data. The single‐tray picking time and single‐tray picking distance 
parameters were assumed to be dependent on the geospatial fruit 
distribution, for the same picking crew. 
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F IGURE  15  Mean values of harvesting efficiency (points) and their 95% confidence interval (shaded areas) as a function of the number of 
sampling scenarios, under uncertain transport request predictions. The harvesting efficiency (blue lines) under perfect transport request 
predictions and the manual harvesting efficiency (green lines) are also presented. [Color figure can be viewed at wileyonlinelibrary.com] 

TABLE  6  Tukey's HSD results of harvesting efficiencies for 
different sampling scenarios in MSA 

Scenarios comparing 
combinations Adjusted p values Null rejections 

10 20 0.0012 True 

10 30 0.0013 True 

10 40 0.0010 True 

10 50 0.0005 True 

20 30 0.0022 True 

20 40 0.0031 True 

20 50 0.0020 True 

30 40 0.7631 False 

30 50 0.0752 False 

40 50 0.1221 False 

Abbreviations: HSD, honest significant difference; MSA, Multiple Scenario 
Approach. 

Figure 16 shows the distributions of the one‐tray picking time of 
the crew for the co‐robotic harvesting blocks of November 10 
(session 2) and November 11 (session 1). The Mann–Whitney rank 
test was used to compare the two distributions. The null hypothesis 
was that for randomly selected values from the distribution of 
harvesting time per tray on November 10 and 11, the probability of 
the selected values on November 10 being greater than November 

11 was equal to the probability of selected values on November 11 
being greater than November 10. The significance level of p values (α) 
for rejecting the null hypothesis (Type I error) was chosen as 1%. The 
calculated p value was 2.13e−9, so the distributions of the two days 
differed significantly. A comparison of their mean values shows that, 
on average, the harvest crew took a longer time to harvest one tray 
on November 11 (894.62 s) than on November 10 (548.71 s). 

Figure 17 shows the distributions of the one‐tray picking 
distance, for the 2 days. The p value from the Mann‐Whitney rank 
test of the two distributions was 2.21e−7, so they were significantly 
different. On average, the pickers moved a longer distance to collect 
a tray of strawberries on November 11 (33.31 m) than November 10 
(17.92 m). 

During manual harvesting, each picker would take their filled tray 
to the collection station, attach a sticker with their personal barcode 
on the tray, take an empty tray and walk back to the field to resume 
picking. Based on our observations, the pickers took around 8 s to 
stick their barcode on the tray and take an empty tray. Thus, the 
walking time to deliver a tray can be estimated by subtracting these 

fe8 s from ∆ti . The exact locations Li
f when a picker starts walking are 

detected by the weight change; the corresponding time instants are 
{end}ti . The transport distance was computed from the coordinates of 
the collection station and Li

f . Hence, each picker's walking speed was 
estimated from the computed transport distance and the measured 
time interval. The manual harvesting data from the first session of 
November 10 was used to estimate the mean walking speeds of the 
six pickers, as shown in Table 7. 
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F IGURE  16  Histogram of the time it 
took pickers to fill one tray, on November 
10 and 11 [Color figure can be viewed at 
wileyonlinelibrary.com] 

F IGURE  17  Histogram of the distance 
traveled by pickers to fill one‐tray, on November 
10 and 11 [Color figure can be viewed at 
wileyonlinelibrary.com] 

TABLE  7  The estimated mean walking speeds of the pickers, 
when they transport full trays to the collection station 

Sample standard 
Sample mean deviation of Number of 
of walking walking speed manual transport 

Picker ID# speed (m/s) (m/s) measurements 

1 0.78 0.05 5 

2 0.49 0.10 5 

3 0.81 0.06 6 

4 0.74 0.11 5 

5 0.91 0.07 6 

6 1.02 0.03 6 

5.5.1 | Co‐robotic harvesting performance 

The methodology described in previous work (Khosro Anjom & 
Vougioukas, 2019) was used to compute the time instants (Figure 17) 
that are necessary to compute the evaluation metrics. The time when 

{startthe picking of the ith tray started (ti 
}) was computed by detecting 

the moment when the measured mass became larger than 550 g 
(500 g is the weight of an empty carton box). The time when the 

{end})picking of the ith tray was completed (ti was identified by 
detecting a drop greater than 1000 g in the measured mass of the 
tray, after the measured mass exceeded 4000 g. A tray‐transport 
request time instant corresponded to a change in the state of 
the request button from “0” to “1.” The productive interval ∆ti

ef for 
the ith tray was calculated by (Equation 15) and the non‐productive 
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ef 
interval ∆ti

fe was calculated using (Equation 16). The efficiency of the E f = 
∆ti 

. (17)f i ef fe 
ith tray was calculated by (Equation 17) (Figure 18). ∆ti + Δti 

ef {end} {start} (15)∆ti = ti − ti , Obviously, it is impossible to have the picking crew re‐harvest 
manually a field block that was harvested using the robots. Ideally, a 

fe {start} {end} (16)∆ti = ti+1 − ti , large trial would use a large field and divide it into smaller blocks and 

F IGURE  18  Visualization of tray mass measurements and time stamps from the collected data: blue dots represent picking start points; 
yellow dots represent tray‐request events (button pressed); red stars represent picking end points. [Color figure can be viewed at 
wileyonlinelibrary.com] 

F IGURE  19  Harvesting performance on November 10: (a) histogram of non‐productive time of co‐robotic and manual harvesting; 
(b) histogram of harvesting efficiency of co‐robotic and manual harvesting. [Color figure can be viewed at wileyonlinelibrary.com] 
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then randomly assign manual and robotic treatments to the blocks. 
However, such a large trial was not acceptable by the grower; 
commercial harvesting is a costly operation that is planned based on 
the weather, crop condition, labor availability, and customer demand. 
Hence, an estimation of the manual harvesting efficiency was made 
for the same field block that was harvested using robots, using the 
pickers' estimated walking speed and the measured locations where 
their trays had filled up. 

TABLE  8  Mann–Whitney rank test results for the means of the 
measured and estimated non‐productive time and harvesting 
efficiency of the co‐robotic and manual harvesting, respectively, on 
November 10. 

Item Mean non‐productive time Mean harvesting efficiency 

p value 3.778e−6 1.3705e−6 

F IGURE  20  Comparison between the mean of harvesting 
efficiency of co‐robotic and manual harvesting, based on 
experimental data, on November 10. [Color figure can be viewed at 
wileyonlinelibrary.com] 

As mentioned above, the location Li
f of each tray can be indexed 

from the instant ti
{end} the tray becomes full. Thus, the non‐productive 

time and the manual harvesting efficiency for each tray were 
estimated from Li

f , the collection station position and the estimated 
walking speeds (from Section 3.1). In summary, the picking crew's 
harvesting performance with the co‐robotic harvest‐aiding system 
was measured directly, and the manual harvesting performance of 
the same picking crew for the same field block was estimated 
indirectly, using the above method. 

Given the significant difference in the yields of the two fields, 
which manifested itself in very different one‐tray picking time and 
distance statistics, the harvesting performances of the two days were 
evaluated separately. The frequency histograms of non‐productive 
time for the manual harvesting and co‐robotic harvesting on 
November 10 are shown in Figure 19a, and the histograms of 
harvesting efficiency on that day are shown in Figure 19b. The 
p value of Mann–Whitney testing results of the performance data 
(non‐productive time and harvesting efficiency) of manual harvesting 
and co‐robotic harvesting on that day are shown in Table 8. Based on 
the calculated p values, the manual and co‐robotic distributions of the 
non‐productive time and efficiency are significantly different, with a 
significance level at 1%. 

Their mean values are shown in the figure. The mean non‐
productive time of co‐robotic harvesting was reduced by more than 
50% of the manual harvest non‐productive time. The mean co‐
robotic harvesting efficiency was 89.2%, 12% higher than the manual 
harvesting efficiency in absolute terms. These results are shown in 
the corresponding pie charts, in Figure 20. 

Similarly, the performance distributions of manual and co‐robotic 
harvesting on November 11 are shown in Figure 21, and the Mann− 
Whitney rank test results are shown in Table 9. Based on the 

F IGURE  21  Harvesting performance on November 11: (a) histogram of non‐productive time of co‐robotic and manual harvesting; 
(b) histogram of harvesting efficiency of co‐robotic and manual harvesting. [Color figure can be viewed at wileyonlinelibrary.com] 
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TABLE  9  Mann–Whitney rank test results for the measured and 
estimated non‐productive time and harvesting efficiency of the co‐
robotic and manual harvesting, respectively, on November 11. 

Item Non‐productive time Harvesting efficiency 

T score 6.253 6.073 

p value 2.409e−7 3.723e−7 

F IGURE  22  Comparison between the mean of harvesting 
efficiency of co‐robotic and manual harvesting, based on 
experimental data, on November 11. [Color figure can be viewed at 
wileyonlinelibrary.com] 

TABLE  10  Mann–Whitney testing results for harvesting 
performances between each pair of picker crew sizes in manual 
harvesting and co‐robotic harvesting 

Co‐robotic harvesting Manual harvesting 

6 12 24 36 6 12 24 36 

6 ‐ 0.1042 0.092 0.0001 ‐ 0.0015 0.0012 0.0001 

12 ‐ ‐ 0.235 0.0002 ‐ ‐ 0.208 0.0048 

24 ‐ ‐ ‐ 0.0006 ‐ ‐ ‐ 0.0052 

calculated p values, the manual and co‐robotic distributions of the non‐
productive time and efficiency are significantly different, at a 
significance level of 1%. From Figure 21b, one can see that the mean 
non‐productive time with the robots was 33% lower than that of 
manual harvesting. Figure 22 shows that the mean harvesting 
efficiency after introducing the robots increased to 94.9% (from 
86.2% during all‐manual harvesting), an improvement of 8.8%, in 
absolute terms. 

5.5.2 | Post‐harvest simulations: Results and 
analysis 

After the harvest field experiments, the recorded workers' harvesting 
parameters (reported in 5.4.2) were used by our simulator to explore 
how the efficiency gains of the harvest‐aid system scale, when the 
size of the crew—and the field—increase. Manual and robot‐aided 
harvesting were simulated for crew sizes of 6, 12, 24, and 36 people; 
larger crew sizes are very rarely used in commercial strawberry 
harvesting. A larger crew would only be used if the field were wider, 
so the width of the field was set to 10 rows times the number of 
pickers (6 pickers harvested 60 rows during our field experiments). 
The length of the rows was fixed at 100 m, because this length is the 
maximum row length in commercial strawberry production in CA. The 
parameters used in the simulations that relate to robot operation and 
scheduling were the same ones used during the field experiments. 
We also performed Mann–Whitney statistical tests of the harvesting 
efficiencies for different pairs of crew sizes to rigorously determine if 
the efficiencies are significantly different, at a significance value of 
1%. Figure 22 shows the manual and co‐robotic harvesting 
efficiencies for 6, 12, 24, and 36 pickers and Table 10 shows the 
statistical test results. The figure shows that the robot‐aided harvest 
efficiency seems to drop slightly, as the crew size increases. The 
statistical tests suggest that the change is not significant when the 

F IGURE  23  Simulation results for 
picker crew with size of 6, 12, 24, and 36. 
The blue bars are co‐robotic harvesting 
efficiency with 1/3 picker ratios and red 
bars are manual harvesting performance 
for that picker crew. [Color figure can be 
viewed at wileyonlinelibrary.com] 
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F IGURE  24  Efficiency gains for 
increasing picker crew sizes 

crew increases from 6 to 12 or 24, or from 12 to 24. However, an 
increase to a crew's size of 36 lowers significantly the harvest 
efficiency of the robotic system. Similarly, the efficiency of manual 
harvesting decreases as the size of the crew increases. The 
explanation behind the trends of manual and co‐robotic harvesting 
efficiencies shown in Figure 23 is given next. 

Since each picker occupies one row, the width of the area covered 
by the rows that are being harvested at any point in time is larger when 
the crew is larger. In commercial production, the collection station is 
placed in the headland as close as possible to the middle row of the 
currently harvested area, to reduce walking in the headland. So, larger 
crews result in wider harvesting areas, which in turn results in larger 
average travel distance from a row's end to the collection station in the 
headland. Workers and robots must travel more as crew size increases, 
and as a result, the efficiencies of both manual and robot‐aided 
harvesting drop. During the specific experiment, the robot travel speed 
was 1.5 m/s inside row and 0.8 m/s on the headland, whereas the 
average estimated picker walking speed was smaller and ranged from 
0.49 to 1.02 m/s (Table 7). For this reason, the efficiency gain of the co‐
robotic system increased as the crew and field size increased; the  
efficiency gains are shown in Figure 24. 

6 | CONCLUSIONS  AND  FUTURE  WORK  

This study presented the development of a harvest‐aid system with a 
team of co‐robotic crop‐transport robots, and strawberry harvesting as 
a target application. Dynamic predictive robot scheduling was 
mathematically modeled as a dynamic stochastic scheduling problem 
with uncertain (tray‐transport) requests. The problem was solved with 
a multiple scenario‐sampling approach (MSA), which computed near‐
optimal solutions in real‐time. Simulation experiments were performed 
to select system parameters and explore the efficiency gain as the 
harvest crew and field become larger. The harvest‐aid system was built 
and deployed successfully during commercial harvesting. 

The simulations showed that the harvest efficiency of stochastic 
predictive scheduling with tray‐transport request rejections was 

much higher than that of the manual harvesting, even at a robot/ 
picker ratio as low as 4:25. Scheduling with request rejections was 
also significantly better than without rejections when the robot/ 
picker ratio was smaller than 10:25, and the same when more robots 
were used. Even if these specific ratios change under different 
harvesting scenarios (e.g., larger diverse crews, wider fields), rejecting 
tray‐transport requests when their manual delivery is predicted to 
take less time than robotic delivery is a sensible policy, which was 
shown to perform better than manual harvesting and at least as well 
as scheduling without rejections. 

Also, the experimental results showed that during low‐yield 
season, the harvest‐aid robotic system operating with the parameters 
described in this study reduced the non‐productive time of the 
pickers by over 60% and improved the harvesting efficiency by an 
average of 10.35% (8.8% and 11.9%) at a robot/picker ratio equal to 
1:3. Finally, simulations based on the data collected during the field 
harvest experiments showed that the efficiencies of manual and co‐
robotic harvesting are expected to drop as the crew and field size 
increase, because the average distance from the exit of a field row to 
the tray collection station increases. However, if the robots are 
programmed to travel faster than the pickers in the headland, the 
efficiency gain of co‐robotic harvesting is expected to increase as the 
crew and field size increase. 

Future research will focus on two key improvements, which stem 
from observations and lessons learned during the field experiments. 
First, the capacity of the current FRAIL‐Bot design is more than one 
tray, and therefore, the robot does not need to return to the 
unloading station immediately after getting one tray from a picker. 
Serving multiple pickers before returning to the collection station is 
expected to increase efficiency. The scheduling problem when 
capacity is larger than one is more complex and would need to be 
solved in real‐time. This extension would render the methodology 
presented in this paper applicable to a wider class of crop‐transport 
in‐field logistics applications. 

Second, the interaction of human pickers and FRAIL‐Bots needs 
to be improved. For example, the robots were programmed to stop 
five meters away from the predicted location of the transport 
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request, for safety purposes. Sometimes (e.g., when the fruit load was 
low) the prediction of the location of the request was too 
“aggressive,” that is, the robot stopped too close to the picker. The 
picker needed to move farther to fill their tray, but the robot was 
blocking their way. Other times (e.g., when the fruit load was high), 
the prediction was overly “conservative,” and the picker had to walk a 
longer distance to the robot. In a couple of instances, we had to stop 
the robot, because it seemed that it might stop “behind the picker,” 
that is, it would collide with them. Better use of existing sensor data 
and the addition of perception modalities (e.g., onboard cameras) to 
estimate the operating states of the pickers could enhance human‐

robot collaboration and safety. 
Finally, more commercial harvesting experiments in different 

fields, in different seasons (low, mid, high yield), with various crew 
sizes and compositions (slow, fast pickers) and numbers of robots 
would be needed to assess the range of improvements in harvesting 
efficiency when the robots are deployed. The requirements for 
human and equipment resources and the cost for undertaking such a 
long‐term experiment were prohibitively high to incorporate in this 
study, but we plan to initiate such an extension project in the near 
future. 
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